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I. INTRODUCTION

It is well known that any real continuous~data function can be represented
by a Fourier series of infinite terms, provided a certain set of conditions
are met. In practice, the infinite series is truncated to contain only a
finite number of terms. Better approximstion is obtained if more terms are in-
! . cluded in the series. This last statement is not exactly true for the case of |
' a real discrete~data function. For this case, there is an optimum truncation
for its Fourier series representation. This fact has not been widely recog- !
. nized by practicing engineers. This report discusses this important and inter- ‘
' esting fact.

4 II. DISCUSSION

A real continuous-~data function f(x) for 2a <x <b can be represented by
a Fourier series of the form

f(x) = Ag + 2 Agcos(k 12)—!1:) + 2 Bysin(k g—!x) (1)
k=1 k=1

where D = b - a, provided that £(x) is finite for x in (a,b) and has a finite
number of discontinuities. In practice, the infinite series is truncated af-
ter the N=th harmonic for a chosen N to make the series finite. This gives
the approximation

- op

N N
i £(x) =Ag + z: Axcos (k %—‘-’x) + 2: Bysin(k %—'x). (2)
i k=1 k=l

)

" The approximation is improved 1f more harmonics are included in equation (2),
that 18, {f a larger N is chogsen; however, this is not entirely true for the

‘ case of a real discrete~data function. For the case of a real discrete-~data

. function, there 18 an optimum truncation for the Fourier series representa-

¥ tion.

Consider a real discrete~data function f(n) for n; <n <n2 where n, nj and
ny are integers. This function can be represented approximately by a
discrete-data Fourier series of finite harmonics, namely,

¢ ol el ™}

K K
£(a) = Ao + 3 Axcos(k 4y + Y Bustack Z14) (3)
=1 k=l

where N = n2 -~ n] and
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Ag = 2 . £(n)cos(k 2¥n) (5)
D N

n=1

By = - Z £(n)sin(k —n) (6)

n=1

Note that N is also an integer which is the number of data points representing

f(n) in the interval from n] to n. The following interesting and important
fact exists:

For a set of N data points representing f(n),
the optimum finite Fourier series consists of
the constant tera, the fundamental, and all
harmonics up to and including g_ .

Thus, for the optimum representation, (3) becomes

N/2 24 N/2
f(n) = Ag +E Agcos(k £=n) + 2 Bysin(k -—n). ¢))
k=1 k=1

II1. VERIFICATION

Three of the ways this fact can be verified are by sampling process,
exponential form of the discrete Fourier series, and solution of simultaneous
equations.

A. Sampling Process

Review the sampling process by considering a sampled signal as
shown in Figure 1. The following quantities can be established:

Record length = D
Fundamental frequency F = %
Number of data points = N

Sampling period d = %

by Sampling frequency fg = % - g = NF

Folding frequency fyp = %s - gl
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f(x)

[ = e
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2d D=Nd
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Thus, the folding frequency is the harnon1c~g of the Fourier series. Figure

2 shows the frequency spectra of a continuous—data signal from which the
discrete~data signal is obtained by sampling, components of the sampled signal,
and the sampled signal. Note that the spectrum of the sampled signal is peri-
odic with a period equal to fg, the sampling frequency.

For practical purposes, the high frequency end of the sampled signal is at
fp, the folding frequency. Thus, the entire practical spectrum for the sampled
signal spans from zero frequency to the harmonic N. There is no useful

2

frequency component above the folding frequency. In fact, if the original
analog signal contains harmonics above fp, they are folded back to the low
frequency region and are added to low frequency components, causing the ali-
asing effect. The accuracy of Fourler coefficients for the base band compo-
nents can be impaired by the aliasing effect. The effect of aliasing is less
1f the sampling frequency is higher, implying a larger number of data points
for a giver length of record.

The discrete~data Fourier coefficients are not necessarily equal to the
Fourier coefficients of the original analog signal due to the picket-fence
effect. However, the finite Fourier series representation of the signal may
agree well with the original analog signal at sampling points.
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a) The original signal.
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! b) Components of sampled signal,
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o c) The resultant of sampled signal.

Figure 2. Frequency spectra.
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B. Exponential Form

Next, consider the exponential form of the discrete Fourier series.
It is well knownl that the dis.rete Fourier series representation of a peri-

ﬁﬁ& odic sequence f(n) of period N needs only contain N complex exponential terms,
X namely,
&
!
L
Ne1 3 ok (8)
f(n) = 3 F(k) e
e k=0

where the F(k)'s are Fourier coefficients. One must be careful to note that
equation (8) contains only the constant term and all harmonics up to'% inclu~
e sive, but not up to the N-th one. This {8 due to the fact that equation (8)
?u{ is equivalent to

N/2 o1

-'"‘q' j N—nk
i £() = D, F(k) e (9
ol
My k= - N/2
vt"l
RO

, and F(k) = F(~k)* = F(N-k)* (10)

wvhere "*" denotes complex conjugate. With the help of Euler's formulas, equa-
tion (9) can be reduced to the form

1».'.]‘; N/2 T
ot tm) = a9+ 3 Agcostk FEn) + Bestack £ n)
Ry k=1 (11
;g; which does not have harmonica above ;.
N

I'.
e
e la.v. Oppenheim and R. W. Schafer, Digital Signal Processing,
N Prentic-Hall, 1975, p. 88.
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C. Simultaneocus Equations

Finally, consider equation (11) forn = 1 to N which gives a set of
N equations. On the right-hand side of each of these equations there are N
coefficients to be determined. They are Ag, Ay for k = 1 tog. and By for k =

1 to‘g'-l. Note that By/2 = O. Hence there are N equations to be solved for

N unknowns, giving a set of unique solutions. In other words, the sequence
f(n) can be perfectly represented by a finite discrete Fourier series con~-
taining the constant term and all harmonics up to N inclusive, where N is the
number of data points. z

IV. RESULTS

A numerical example 13 given to 1llustrate the fact discussed. Consider
a set of 36 data points representing the errors of a resolver at 36 equally
spaced angular positions in the range from 0 to 360 degrees, as shown in Table
l. The coefficients for the corresponding discrete Fourier series are shown
in Table 2. Notice that By/2 = Byg = 0, and values of the coefficients are

symmetrical about the'; = 18 point. Table 3 shows the Fourier representation

RMS error. Notice the error is minimum when the series contains only the con-
stant term and all harmonics up to N inclusive. In fact, this minimum value

7
should be zero. The discrepancy is caused by the finite word-length effect of
the computer used. Figure 3 depicts the RMS error versus the included
harmonics.
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TABLE 1. Resolver Error Data in 10 Degree Increments.
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